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Introduction

Imagine nearly half a million children dying of a disease each year. 
Impossible with today’s medical expertise, right? Wrong. Two 
hundred forty-one million children contract malaria each year, and 
nearly 500,000 of those die. Luckily, there are a couple of very prom-
ising therapies on the horizon. One of these, antibody therapy, is the 
basis for this book.

Monoclonal antibodies (mAbs) represent a promising frontier in 
the fight against malaria, offering a novel approach to preven-
tion and treatment. They are engineered to target specific proteins 
of the malaria-causing parasite, Plas modium falciparum, thereby 
preventing infection.

Recent studies have shown that mAbs can provide significant protec-
tion against malaria. For instance, the monoclonal antibody CIS43LS 
demonstrated up to 88.2% efficacy in preventing malaria infection 
over six months in Mali, Africa (1). Another antibody, L9LS, has shown 
promise due to its ability to be administered subcutaneously, offering 
a more convenient delivery method than intravenous infusion (2,3).

Several clinical trials have assessed the safety and efficacy of monoclo-
nal antibodies against malaria. A Phase 2 trial in Mali demonstrated 
that a single dose of CIS43LS effectively prevented malaria infection in 
adults during the peak malaria season (4,5). Similarly, L9LS has shown 
77% efficacy in protecting children from symptomatic malaria in a 
recent Phase 2 trial (6). These trials highlight the potential of mAbs as a 
complementary strategy to existing malaria prevention measures (7,8).

I
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Introduction Fig.1 A single injection of an experimental monoclonal antibody called 
L9LS prevented malaria infection in children in Mali. L9LS binds to and neutralizes 
“sporozoites,” the form of the malaria parasite transmitted by mosquitoes that invades 
the liver to initiate infection. Credit: NIH See related April 26, 2024 news release, 
“Experimental NIH Malaria Monoclonal Antibody Protective in Malian Children,” 
at www.niaid.nih.gov/news-events/experimental-nih-malaria-mo... NIAID 
https://www.flickr.com/photos/54591706@N02/53687072608/

There are challenges to the widespread use of these antibodies. The 
high cost of production and administration is a significant barrier, 
particularly in low- and middle-income countries where malaria is 
most prevalent (9). Efforts are underway to reduce costs and improve 
the accessibility of mAbs, with organizations like the Gates Foun-
dation investing in technologies to make these treatments more 
affordable (10).
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The development of monoclonal antibodies for malaria prevention 
is ongoing, with researchers focusing on optimizing the biophysical 
properties of these antibodies for cost-effective manufacturing and 
dosing, especially in pediatric populations (11). The discovery of new 
antibody lineages and the engineering of potent, long-lasting mAbs 
are crucial steps toward making these treatments viable for large-scale 
use (12).

Antibodies for Alzheimer’s

As our life expectancy continues to rise, diseases of dementia and 
particularly Alzheimer’s Disease have become more prevalent.

Monoclonal antibodies (mAbs) have also emerged as a promising ther-
apeutic approach for Alzheimer’s disease (AD), particularly targeting 
amyloid-beta (Aβ) plaques, which are believed to play a crucial role in 
the disease’s progression.

Aducanumab and lecanemab are two mAbs that have received 
accelerated approval from the US FDA for treating early Alzheim-
er’s disease in patients with confirmed β-amyloid pathology. These 
treatments mark a significant step forward in Alzheimer’s thera-
peutics, offering disease-modifying properties that were previously 
unavailable (13,14).

Both aducanumab and lecanemab work by significantly reducing total 
brain Aβ, as evidenced by amyloid positron emission tomography 
(PET) scans. This reduction is associated with a slowing of cognitive 
decline, which is clinically meaningful as it extends cognitive integrity 
and delays the onset of severe dementia phases (15,16).

Donanemab is another promising monoclonal antibody that has 
shown potential in clinical trials. It has been observed to slow disease 
progression in amyloid-positive, early symptomatic patients over 76 
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weeks. Notably, about half of the participants on donanemab expe-
rienced no clinical progression at one year (17). However, the treat-
ment does come with safety risks and limitations, and its effectiveness 
outside of structured research settings remains uncertain (18).

FDA-approved anti-Aβ mAbs have demonstrated statistically signif-
icant improvements in clinical outcomes, including various cognitive 
and functional scales such as CDR-SB and ADAS-Cog. These improve-
ments suggest that mAbs can effectively enhance daily life activities 
in mild or moderate AD (19,20).

Despite their benefits, mAbs are associated with increased risks of 
adverse events, such as amyloid-related imaging abnormalities (ARIA), 
cerebral edema, and hemorrhage. These risks highlight the need for 
careful patient selection and monitoring during treatment (21,22).

The development of Aβ-targeting monoclonal antibodies represents 
the beginning of a new era in molecular therapies for Alzheimer’s and 
related neurodegenerative disorders. While these treatments offer 
hope, they also underscore the complexity of Alzheimer’s disease and 
the need for continued research to optimize their use and minimize 
risks (23,24).

Antibody Therapy for COVID

Antibody therapy, particularly monoclonal antibodies, has emerged 
as a significant tool in the fight against COVID-19, especially for indi-
viduals with compromised immune systems.

The FDA has recently authorized a new monoclonal antibody treat-
ment, Pemgarda, specifically designed to protect immunocompro-
mised individuals from COVID-19. This treatment is a successor to 
Evusheld, which was withdrawn due to its ineffectiveness against new 
variants (25). Pemgarda is administered as an hour-long infusion and 
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is expected to be available to about 6% of the U.S. population, target-
ing those who are severely or moderately immunocompromised (26).

Monoclonal antibodies like Pemgarda provide passive immunization, 
offering an additional layer of protection for those with compromised 
immune systems. However, they are not intended for treating active 
COVID-19 infections (27). The development of new variants has chal-
lenged the efficacy of previous monoclonal antibodies, such as Evush-
eld, which could not keep up with the evolving virus (28).

Globally, monoclonal antibodies have been a preferred therapeutic 
solution for vulnerable individuals, although many have lost efficacy 
against newer variants like Omicron (29). In France, for instance, around 
thirty monoclonal antibodies are authorized for various diseases, but 
none are currently approved for preventive use against COVID-19 (30).

The ACTIV clinical trials have been pivotal in evaluating the safety 
and efficacy of monoclonal antibodies. ACTIV-2 and ACTIV-3 proto-
cols focused on outpatient and inpatient settings, respectively, assess-
ing the ability of these therapies to reduce symptoms and improve 
recovery in COVID-19 patients (31). These trials have highlighted the 
potential of monoclonal antibodies in non-hospitalized patients with 
mild-to-moderate symptoms (32,33).

The development of monoclonal antibodies is rooted in a long history 
of immunological interventions, dating back to the first therapeutic 
serum for diphtheria over 125 years ago (34). Today, the production of 
recombinant monoclonal antibodies is scalable and cost-competitive, 
making them a viable option for widespread use (35).

Monoclonal Antibodies to Combat Cancer

Monoclonal antibodies (mAbs) have become a cornerstone in cancer 
therapy due to their ability to target cancer cells specifically.
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Antibody-drug conjugates (ADCs) are a novel monoclonal antibody 
class with significant promise in cancer treatment. They work by link-
ing a cytotoxic drug to an antibody, which targets specific antigens 
on cancer cells, thereby delivering the drug directly to the tumor site. 
This targeted approach enhances the antitumor efficacy while mini-
mizing systemic toxicity (36). The FDA has approved several ADCs; 
many more are under clinical investigation, highlighting their grow-
ing importance in oncology (37).

Notable ADCs

1.	 Gemtuzumab Ozogamicin (GO): This was the first ADC to re-
ceive global market approval. It targets CD33 and is used in the 
treatment of acute myeloid leukemia (38,39).

2.	 Brentuximab Vedotin (BV): Approved for the treatment of 
Hodgkin lymphoma and systemic anaplastic large cell lympho-
ma, BV targets CD30 and is linked to a microtubule-disrupting 
agent (40,41).

3.	 Trastuzumab Emtansine (T-DM1): This ADC targets HER2-​
positive breast cancer by combining trastuzumab with the cy-
totoxic agent DM1 (42,43).

4.	 Inotuzumab Ozogamicin (InO): Used for relapsed or refrac-
tory B-cell acute lymphoblastic leukemia, this ADC targets 
CD22 (44,45).

5.	 Polatuzumab Vedotin (PV) Targets CD79b and is combined 
with other therapies for treating diffuse large B-cell lympho-
ma (46,47). 

6.	 Enfortumab Vedotin (EV): Targets Nectin-4 and is used in 
urothelial carcinoma (48,49).
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7.	 Trastuzumab Deruxtecan (T-DXd): Another HER2-targeting 
ADC, it is used for breast cancer and other HER2-expressing 
tumors (50,51).

These antibodies work by stimulating the immune system to attack 
cancer cells. Examples include anti-CTLA-4, which is in phase III trials 
for malignant melanoma, and other antibodies targeting immune 
checkpoints and co-stimulatory receptors (52).

Several monoclonal antibodies have been well-established in cancer 
treatment over the years. These include:

•	Rituximab (Rituxan®): Used for non-Hodgkin lymphoma 
and chronic lymphocytic leukemia (53).

•	Trastuzumab (Herceptin®): A key treatment for HER2-posi-
tive breast cancer (54).

•	Bevacizumab (Avastin®): Used for various cancers, including 
colorectal and lung cancer, by inhibiting angiogenesis (55).

Monoclonal antibodies to Malaria, Alzheimer’s, COVID-19, and 
Cancer represent a fraction of the current and futuristic ways antibod-
ies can be used for therapy. Antibodies are also a valuable tool for use 
as diagnostic and research tools.

This book is a comprehensive look at the biology of antibodies, how 
they are produced in the body and laboratory, how they are currently 
used in therapy, diagnosis, and research, and their possible future 
in medicine.
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Part I

History



Chapter 1

Overview of Early Experiments and 
Discoveries

Smallpox Inoculation (1714-1717)

The journey of the understanding of antibodies began in the early 
18th century with efforts to combat smallpox. Lady Mary Wortley 
Montagu, Emanuel Timoni, and James Pylarini were pioneers in 
smallpox inodculation, laying the groundwork for future immuno-
logical research (1).

Chapter 1 Fig 1 A portrait of Lady Mary Wortley Montagu, wife to the ambassa-
dor of the Ottoman Empire and forerunner of the variolation movement in England.
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Chapter 1 Fig 2 Ivory and box wood vaccinator, Europe, 1701-1800 Wellcome 
L0058083.jpg This file comes from Wellcome Images, a website operated by Well-
come Trust, a global charitable foundation based in the United Kingdom. Refer 
to Wellcome blog post (archive).

The history of smallpox vaccination does not necessarily start with 
Edward Jenner’s (1749-1823) introduction of a cowpox vaccine in 1798. 
A procedure known as variolation was devised in China about a thou-
sand years ago and then spread westwards to Turkey and several other 
Islamic countries. In variolation, material from smallpox pustules was 
given to an undinfected person by blowing dried smallpox scabs into 
their nose in the expectation that they would contract a milder form of 
the disease and so be protected from more dangerous infections. This 
method was brought to England by Lady Mary Wortley Montague 
(1689-1762) in 1720. It was made illegal in the United Kingdom in 1840 
as it could spread the disease further while also transmitting other 
diseases, such as syphilis.
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Serum Therapy (1890)

In 1890, Emil von Behring and Shibasaburo Kitasato demonstrated 
that serum from animals immunized against diphtheria could cure 
infected animals. This experiment was crucial in proving the thera-
peutic potential of antibodies (2,3).

Antitoxin Production (1894)

To treat diphtheria in humans, larger quantities of antitoxin were 
needed. Pharmaceutical companies began immunizing sheep and 
horses, significantly reducing mortality rates (4).

Paul Ehrlich’s Hypothesis (1897)

Paul Ehrlich proposed that cells have side chains that bind to toxins, 
coining the term “antibody” and describing it as a branched mole-
cule. This theoretical framework was foundational for future antibody 
research (5,6)

Advances in Antibody Characterization

Protein Nature of Antibodies (1923)

Michael Heidelberger and Oswald Avery discovered that antibodies 
are proteins, dispelling the mystical views surrounding them and 
solidifying their biochemical nature (7).
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Plasma Cells and Antibody Production (1948)

Swedish immunologist Astrid Fagraeus identified plasma cells as 
crucial for antibody production, enhancing our understanding of the 
immune response (8).

Molecular Structure (1959)

Rodney Porter and Gerald Edelman independently published the 
molecular structure of antibodies, a discovery that earned them the 
Nobel Prize in Physiology or Medicine (9).

Modern Era of Antibody Research

Monoclonal Antibodies (1975)

The modern era of antibody research was revolutionized by Georges 
Köhler and César Milstein, who invented monoclonal antibodies. 
This breakthrough allowed for the production of antibodies with high 
specificity and uniformity (10).

Humanized Monoclonal Antibodies (1980s)

Greg Winter and colleagues at Cambridge University developed tech-
niques to humanize mouse and rat monoclonal antibodies, making 
them suitable for therapeutic use in humans (11).

Phage Display Technology (1985)

Winter’s development of antibody phage display enabled the discov-
ery of antibodies to almost any target by using a library of human 
gene fragments inserted into bacteriophage DNA. This technology 
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has been instrumental in the development of numerous therapeutic 
antibodies (12).

Recent Innovations and Applications

High-Throughput Screening (2023)

Recent advancements include the use of the Illumina HiSeq platform 
for rapid screening of antibody-antigen interactions. This method 
significantly accelerates the discovery of high-affinity antibodies, 
reducing the time from months to just a few days (13).

Machine Learning in Antibody Discovery (2023)

Machine learning models trained on antibody-antigen interactions 
are now being used to generate new high-affinity antibody sequences, 
further enhancing the efficiency of antibody discovery (14).

Therapeutic Applications

Monoclonal antibodies have become one of the most important classes 
of biological drugs used in treating diseases such as rheumatoid 
arthritis, multiple sclerosis, and cancer. The development of recombi-
nant antibodies and engineered variants like afucosylated antibodies 
has expanded their therapeutic potential (15,16).

Conclusion

The discovery and development of antibodies have been marked 
by a series of groundbreaking experiments and innovations. From 
early inoculation practices to modern high-throughput screening 
and machine learning techniques, each milestone has contributed to 



The Body’s Guided Missile System of Defense20

our current understanding and utilization of antibodies in medicine 
and research.
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Chapter 2

Variolation and the Development of a 
Smallpox Vaccine

Smallpox was one of the deadliest infectious diseases known to human-
ity, causing millions of deaths before the advent of effective immuniza-
tion strategies. The journey from variolation to the development of the 
smallpox vaccine marks a significant milestone in medical history.

Variolation: The Early Method of Immunization

Variolation was an early method of immunization against smallpox, 
practiced widely in the Ottoman Empire, England, and the U.S. colo-
nies by the 18th century (1). This method involved deliberately infect-
ing a person with material from smallpox sores, usually under the 
supervision of a physician, to elicit an immune response without 
causing a full-blown infection  (2). Despite its risks, variolation was 
the only known way to prevent smallpox infection before 1796 (3).

The Birth of Vaccination

The practice of variolation was eventually replaced by vaccination, a safer 
and more effective immunization strategy (4). The basis for vaccination 
began in 1796 when the English physician Edward Jenner observed that 
milkmaids who had contracted cowpox did not get smallpox (5). Jenner 
hypothesized that inoculating a person with the cowpox virus would 
protect them from smallpox (6). He tested this hypothesis by inoculating 
an 8-year-old boy, James Phipps, with matter from a cowpox sore, which 
successfully rendered the boy immune to smallpox (7).
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Chapter 2 Fig 1 The process above shows the steps taken by Edward Jenner to create 
vaccination. Edward Jenner, the father of vaccination, created the first vaccine for 
smallpox. He did this by inoculating James Phipps with cowpox, a similar virus to 
smallpox, to create immunity, unlike variolation, which used smallpox to generate 
immunity to itself. Srcyr16

The Impact of Jenner’s Discovery

Edward Jenner’s detailed description of his experiments convinced 
his colleagues and authorities that vaccination with cowpox was pref-
erable in terms of safety compared to variolation (8). By 1803, Jenner’s 
findings had been translated into multiple languages, and vaccina-
tion campaigns were launched in the Americas and the Far East (9). 
This marked the beginning of a global effort to control and eventually 
eradicate smallpox.

Chapter 2 Fig 2 This shows accidental cowpox on the hand of Sarah Nelmes, from 
whom Jenner vaccinated James Phipps in 1796. Published in his Inquiry, 1798. From 
the USA NLM of the NLH (who have now, in March 2014, removed it to the vacci-
nation page) who do not assert copyright and, in general, provide pictures under PD. 
This is a very old image.
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The Eradication of Smallpox

The development of the smallpox vaccine was a significant mile-
stone in the history of medicine (4). It not only led to the eradication 
of smallpox but also paved the way for the development of vaccines 
for other diseases, such as diphtheria, measles, mumps, rubella, and 
influenza (1). In 1980, the World Health Organization (WHO) declared 
smallpox officially eradicated, marking the end of a disease that had 
killed millions (10,11).

Conclusion

Variolation was an important step in the history of immunization, but 
it was the development of the smallpox vaccine by Edward Jenner that 
truly revolutionized the control of infectious diseases. Jenner’s work 
not only saved countless lives but also laid the foundation for modern 
vaccinology, leading to the development of vaccines for numerous 
other diseases and the eventual eradication of smallpox.
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Chapter 3

Experiments by Emil von Behring and 
Shibasaburo Kitasato on Serum Therapy

In the late 19th century, Emil von Behring and Shibasaburo Kita-
sato conducted groundbreaking experiments that demonstrated the 
potential of serum therapy to combat infectious diseases like diph-
theria. Their work laid the foundation for modern immunology and 
earned von Behring the first Nobel Prize in Physiology or Medicine in 
1901. This chapter delves into the details of their experiments and the 
impact of their discoveries.

Key Experiments and Findings

Development of Antitoxins

Von Behring and Kitasato’s initial experiments focused on developing 
‘antitoxins’ against diphtheria and tetanus. They injected diphtheria 
and tetanus toxins into animals such as guinea pigs, goats, and horses. 
Once these animals developed immunity, they extracted antitoxins 
from their serum, which could then protect and cure non-immunized 
animals (1).


